Causal learning across domains.

نویسندگان

  • Laura E Schulz
  • Alison Gopnik
چکیده

Five studies investigated (a) children's ability to use the dependent and independent probabilities of events to make causal inferences and (b) the interaction between such inferences and domain-specific knowledge. In Experiment 1, preschoolers used patterns of dependence and independence to make accurate causal inferences in the domains of biology and psychology. Experiment 2 replicated the results in the domain of biology with a more complex pattern of conditional dependencies. In Experiment 3, children used evidence about patterns of dependence and independence to craft novel interventions across domains. In Experiments 4 and 5, children's sensitivity to patterns of dependence was pitted against their domain-specific knowledge. Children used conditional probabilities to make accurate causal inferences even when asked to violate domain boundaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Transfer Learning in Multi-Armed Bandits: A Causal Approach

Reinforcement learning (RL) agents have been deployed in complex environments where interactions are costly, and learning is usually slow. One prominent task in these settings is to reuse interactions performed by other agents to accelerate the learning process. Causal inference provides a family of methods to infer the effects of actions from a combination of data and qualitative assumptions a...

متن کامل

Causal Models and the Acquisition of Category Structure

This article proposes that learning of categories based on cause-effect relations is guided by causal models. In addition to incorporating domain-specific knowledge, causal models can be based on knowledge of such general structural properties as the direction of the causal arrow and the variability of causal variables. Five experiments tested the influence of commoncause models and common-effe...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental psychology

دوره 40 2  شماره 

صفحات  -

تاریخ انتشار 2004